
NetAdvantage Reporting 2013.1 (build 1058)

Service Release Notes – November 2013

Use Reporting, the industry's first WPF and Silverlight-based design-time

and rendering reporting tool, to create elegant and easy-to-design reports

engineered to help you deliver information to your users in the shortest

time possible —without the need for legacy code.

2 of 4

Bug Fixes

Component

Product

Impact Description

Reporting (Viewer) Bug Fix

Server-side Export didn’t work when

System fonts were not accessible

When exporting a report from the server, now

you can define IFontLoader’s to load fonts

when the system fonts are not available. When

exporting reports with an IServerExporter, you

can now configure fonts as embedded fonts.

For more information refer to Font Loaders in

the Changes/Addition section.

Reporting (Viewer) Bug Fix

Using Reporting and Infragistics

Silverlight controls in the same

application issue fixed

You can now use the Reporting SL viewer and
other Infragistics Silverlight controls in the
same application without issue.

Reporting (Viewer) Bug Fix

Print button in the HTML5 viewer was

not displayed in IE11

When viewing a report in HTML5 using IE11
with the Adobe Reader extension installed,
now the print button is displayed as expected.

3 of 4

Changes/Additions for 2013 Volume 1

Font Loader
If you are exporting a report server-side using a server without access to

system fonts or without the required fonts installed, you need to

dynamically load those fonts into the server.

The way to do this is implementing the IFontLoader interface.

IFontLoader interface

The interface is defined under Infragistics.Reports namespace in the

InfragisticsWPF4.Reports.v13.1 assembly and has only one method

defined with the following signature:

bool TryGetExternalEmbeddedFonts(string fontFamily, ref
FontWeight fontWeight, ref FontStyle fontStyle, out byte[]
data);

The method implementation should return true or false depending if the

requested font could be resolved or not, and requested font bytes

should be returned in the data parameter of the method.

Here there is a practical example:

In this solution we have the Arial.tff file as an embedded resource in the

web project where the FontLoader is implemented.

[FontLoader]
public class MyFontLoader : IFontLoader
{
 public bool TryGetExternalEmbeddedFonts(string fontFamily, ref
FontWeight fontWeight, ref FontStyle fontStyle, out byte[] data)
 {
 const string ResourceName = "Fonts.Arial.ttf";

 if (fontFamily == "Arial")
 {
 var assembly = Assembly.GetExecutingAssembly();
 using (var stream =
assembly.GetManifestResourceStream(ResourceName))
 {
 var bytes = GetBytes(stream);
 data = bytes;
 }

4 of 4

 return true;
 }

 data = new byte[0];
 return false;
 }

 private static byte[] GetBytes(Stream stream)
 {
 using (var memoryStream = new MemoryStream())
 {
 stream.CopyTo(memoryStream);
 return memoryStream.ToArray();
 }
 }

 }

In order to enable this class to be discovered by our MEF composer

you should follow this two steps:

1) Configure the assembly where the loader is contained as a

runtime assembly. A section in the configuration file with this

tags should be added:

 <infragistics.reports>
 <runtimeAssemblies>
 <add assembly="ProjectAssemblyName" />
 </runtimeAssemblies>
 </infragistics.reports>

2) Add a [FontLoader] attribute at the top of the class. This

attribute indicates to our MEF composer that this is an

implementation of an IFontLoader.

You need to add a reference to the

System.ComponentModel.Composition assembly.

